For the figure, the each step corresponds to a processed batch(16).
Resdcn + FPNx2 (↓:32,16,8,4)
18 layer
with warm-up and cosine schedule
1 2 3 4 5 6
| python train.py --log_name resdcn18_all \ --data_dir ~/cyl/Data/PSR_final \ --arch resdcn_18 \ --lr 1e-5 \ --batch_size 36 \ --num_epochs 90 --num_workers 0 --log_interval 5
|
### 50 layer
#### with warm-up and cosine schedule
1 2 3 4 5 6
| python train.py --log_name resdcn50_all \ --data_dir ~/cyl/Data/PSR_final \ --arch resdcn_50 \ --lr 1e-5 \ --batch_size 24 \ --num_epochs 90 --num_workers 0 --log_interval 5
|
### 101 layer
#### Use PSR dataset before remove bg samples (12415 training samples)
1 2 3 4 5 6 7
| python train.py --log_name resdcn_all \ --data_dir ~/cyl/Data/PSR_final \ --arch resdcn_101 \ --lr 5e-5 \ --lr_step 40,70 \ --batch_size 16 \ --num_epochs 90 --num_workers 0 --log_interval 5
|
#### Use PSR dataset after remove bg samples (11729 samples)
1 2 3 4 5 6 7
| python train.py --log_name resdcn_all \ --data_dir ~/cyl/Data/PSR_final \ --arch resdcn_101 \ --lr 5e-5 \ --lr_step 40,70 \ --batch_size 16 \ --num_epochs 90 --num_workers 0 --log_interval 5
|
HRNet (↓:4,4,4,4)
Use PSR dataset after remove bg samples (11729 samples)
1 2 3 4 5 6 7
| python train.py --log_name hrnet_all \ --data_dir ~/cyl/Data/PSR_final \ --arch hrnet \ --lr 5e-5 \ --lr_step 40,70 \ --batch_size 16 \ --num_epochs 90 --num_workers 0 --log_interval 5
|
## Hourglass (↓:4,4,4,4)
### Use PSR dataset after remove bg samples (11729 samples)
1 2 3 4 5 6 7
| python train.py --log_name hg_all \ --data_dir ~/cyl/Data/PSR_final \ --arch hourglass_small \ --lr 5e-5 \ --lr_step 40,70 \ --batch_size 16 \ --num_epochs 90 --num_workers 0 --log_interval 5
|